Accès gratuit
Pré-publication électronique
Dans une revue
Rev. Méd. Périnat.
Section Article de Synthèse / Review article
DOI https://doi.org/10.3166/rmp-2020-0081
Publié en ligne 8 juillet 2020
  • Malin G, Tonks AM, Morris RK, et al (2012) Congenital lower urinary tract obstruction (LUTO): a population-based epidemiological study. Br J Obstet Gynecol 119:1455–64 [CrossRef] [Google Scholar]
  • Roy S, Colmant C, Cordier AG, Sénat MV (2016) Contribution of US signs for the prenatal diagnosis of PUV: experience of 3 years at the maternity of Bicêtre hospital. J Gynecol Obstet Biol Reprod 45:478–83 [CrossRef] [Google Scholar]
  • Fontanella F, Adama Van Scheltema PN, Dui L, et al (2019) Antenatal staging of congenital lower urinary tract obstruction. Ultrasound Obstet Gynecol 53:520–4 [CrossRef] [PubMed] [Google Scholar]
  • Fiévet L, Faure A, Coze S, et al (2014) Fetal megacystis: etiology management and outcome according to gestational age. Urology 84:185–90 [Google Scholar]
  • Bornes M, Spaggiari E, Schmitz T, et al (2013) Outcome and etiologies of fetal megacystis according to the gestational age at diagnosis. Prenat Diagn 33:1162–6 [Google Scholar]
  • Fontanella F, Maggio L, Verheij LBGM (2019) Fetal megacystis. Ultrasound Obstet Gynecol 53:779–87 [CrossRef] [PubMed] [Google Scholar]
  • Bernardes LS, Aknes G, Saada J, et al (2009) Keyhole sign: how specific it is for the diagnosis of PUV? Ultrasound Obstet Gynecol 34:419–23 [CrossRef] [PubMed] [Google Scholar]
  • Robyr R, Benachi A, Daikha-Dahmane F, et al (2005) Correlation between US and anatomical findings in fetuses with lower urinary tract obstruction in the first half of pregnancy. Ultrasound Obstet Gynecol 25:478–83 [CrossRef] [PubMed] [Google Scholar]
  • Chitrit Y, Bourdon M, Korb D, et al (2016) PUV and VUR: can prenatal US distinguish between these two conditions in male fetuses. Prenat Diagn 36:831–7 [Google Scholar]
  • Quibel S, Brasseur-Dauduy M, Liard-Zimuda A, et al (2016) PUV: how the study of fetal micturition can help to reach the diagnosis. Prenat Diagnosis 36:1–2 [CrossRef] [Google Scholar]
  • Cassart M, Massez A, Metens T, et al (2004) Complementary role of MRI after US in assessing bilateral urinary tract anomalies in the fetus. AJR Am J Roentgenol 182:689–95 [CrossRef] [PubMed] [Google Scholar]
  • Alamo L, Laswad T, Schnyder P, et al (2010) MRI as complementary to US in the diagnosis and characterization of anomalies of the GU tract. Eur J Radiol 76:258–64 [CrossRef] [PubMed] [Google Scholar]
  • Pico H, Dabadie A, Bourliere-Najean B, et al (2014) The contribution of MR-urography in the diagnosis of fetal uronephropathies. Diagn Interv Imaging 95:573–8 [Google Scholar]
  • Farrugia MK, Braun MC, Peters CA, et al (2017) Report of the society for fetal urology panel discussion on the selection criteria and intervention for fetal bladder outlet obstruction. J Pediatr Urol 13:345–51 [CrossRef] [PubMed] [Google Scholar]
  • Ruano R, Safdar A, Au J, et al (2016) Defining and predicting “intrauterine fetal renal failure” in congenital lower urinary tract obstruction. Pediatr Nephrol 31:605–12 [CrossRef] [PubMed] [Google Scholar]
  • Spaggiari E, Faure G, Dreux S, et al (2017) Sequential fetal serum β2-microglobulin to predict postnatal renal function in bilateral or low urinary tract obstruction. Ultrasound Obstet Gynecol 49:617–22 [CrossRef] [PubMed] [Google Scholar]
  • Abdennadher W, Chalouhi G, Dreux S, et al (2015) Fetal urine biochemistry at 13–23 weeks of gestation in lower urinary tract obstruction: criteria for in utero treatment. Ultrasound Obstet Gynecol 46:306–11 [CrossRef] [PubMed] [Google Scholar]
  • Dreux S, Rosenblatt J, Moussy-Durandy A, et al (2018) Urine biochemistry to predict long-term outcomes in fetuses with posterior urethral valves. Prenat Diagn 38:964–70 [Google Scholar]
  • Ruano R, Sananes N, Sangi-Haghpeykar H, et al (2015) Fetal intervention for severe lower urinary tract obstruction: a multicenter case-control study comparing fetal cystoscopy with vesicoamniotic shunting. Ultrasound Obstet Gynecol 45:452–8 [CrossRef] [PubMed] [Google Scholar]
  • Saccone G, D’Alessandro P, Escolino M, et al (2018) Antenatal intervention for congenital fetal lower urinary tract obstruction (LUTO): a systematic review and meta-analysis. J Matern Fetal Neonatal Med 2 2147–56 [Google Scholar]
  • Sananes N, Cruz-Martinez R, Favre R, et al (2016) Two-year outcomes after diagnostic and therapeutic fetal cystoscopy for lower urinary tract obstruction. Prenat Diagn 36:297–303 [Google Scholar]
  • Son JK, Taylor GA (2014) Transperineal ultrasonography. Pediatr Radiol 44:193–201 [CrossRef] [PubMed] [Google Scholar]
  • Hochart V, Lahoche A, Priso RH, et al (2016) PUV: are neonatal imaging findings predictive of renal function during early childhood? Pediatr Radiol 46:1418–23 [CrossRef] [PubMed] [Google Scholar]
  • Odeh R, Noone D, Bowlin PR, et al (2016) Predicting risk of chronic kidney disease in infants and young children with posterior urethral valves at time of diagnosis: objective analysis of initial ultrasound kidney characteristics and validation of parenchyma area as forecasters of renal reserve. J Urol 196:862–8 [CrossRef] [PubMed] [Google Scholar]
  • Oswald J, Riccabona M, Lusuardi L, et al (2002) VCUG using the suprapubic versus transurethral route in infants and children: results of a prospective pain scale oriented study. J Urol 168:2586–9 [CrossRef] [PubMed] [Google Scholar]
  • Bosio M, Manzoni GA (2002) Detection of PUV with voiding cysto-urethrography with echo contrast. J Urol 168:1711–5 [CrossRef] [PubMed] [Google Scholar]
  • Yohannes P, Hanna M (2002) Current trends in the management of posterior urethral valves. Urology 60:947–53 [Google Scholar]
  • López Pereira P, Martinez Urrutia MJ, Jaureguizar E (2004) Initial and long-term management of posterior urethral valves. World J Urol 22:418–24 [CrossRef] [PubMed] [Google Scholar]
  • Deshpande AV (2018) Current strategies to predict and manage sequelae of posterior urethral valves in children. Pediatr Nephrol 33:1651–61 [CrossRef] [PubMed] [Google Scholar]
  • Sarhan O, Nakshabandi Z, Alghanbar M, et al (2015) Posterior urethral valves: metabolic consequences in a cohort of patients. J Pediatr Urol 11:216.e1–6 [Google Scholar]
  • Hennus PM, van der Heijden GJ, Boosch JL, et al (2012) A systematic review on renal and bladder dysfunction after endoscopic treatment of infravesical obstruction in boys. PLoS One 7:e44663 [CrossRef] [PubMed] [Google Scholar]
  • Rianthavorn P, Parkpibul P (2019) Long-term growth in children with posterior urethral valves. J Pediatr Urol 15:264.e1–e5 [Google Scholar]
  • Coleman R, King T, Nicoara CD, et al (2015) Nadir creatinine in posterior urethral valves: how high is low enough? J Pediatr Urol 6:356e.1–e.5 [Google Scholar]
  • Osama MS, El Ghoneimi AA, Helmi TA, et al (2011) Posterior urethral valves: multivariate analysis of factors affecting the final outcome. J Urol 185:2491–5 [CrossRef] [PubMed] [Google Scholar]
  • Heikilla J, Holmberg C, Kyllonen L, et al (2011) Long-Term risk of end stage renal disease in patients with posterior urethral valves. J Urol 186:2392–6 [CrossRef] [PubMed] [Google Scholar]
  • Ismaili K, Avni FE, Wissing KM, et al (2004) Long-term clinical outcome of infants with mild and moderate fetal pyelectasis: validation of neonatal ultrasound as a screening tool to detect significant nephrouropathies. J Pediatr 144:759–64 [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.